Chemical structure:Layout 1

نویسنده

  • Sally Rose
چکیده

In the pharmaceutical world, scientists routinely use 2D structural likeness to indicate similar biological action. 2D ‘atom and bond’ representation such as those shown in Figure 1 are, after all, the de facto language of chemistry. So why question the authority of this representation after applying it for so long on all aspects of drug discovery from activity enhancement to toxicity and from patent application to safety issues? The reason is simple – it has a serious limitation that inhibits our ability to discover, protect and bring to market new drugs. That limitation is familiar to most chemists. We have known for many years that very different structures can act at the same biological target to effect the same biological action. The obvious conclusion must be that chemical structure – atoms linked by bonds – is not what is recognised by a biological target. Molecule A and molecule B in Figure 1 bear no structural relationship to one other and yet molecule B mimics molecule A – both are able to occupy the same site on a common target (see Figure 4). The corollary is also often true; very closely related derivative structures regularly exhibit very diverse activities at a given target. This inability of 2D structure to describe a compound’s activity has profound consequences. Chemists are routinely required to make ‘chemotype jumps’ to move from one chemical class, all members of which have one or more common structural features, to another. Such chemotype jumps are vital if structures are to be novel and patentable, if pre-clinical ADME (absorption, distribution, metabolism, and excretion), safety and By Dr Andy Vinter, Dr Steve Gardner and Dr Sally Rose Overcoming the limitations of chemical structure

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total chemical synthesis of the site-selective azide-labeled [I66A]HIV-1 protease.

The first total chemical synthesis of the site-selective azide-labeled [I66A]HIV-1 protease is described by native chemical ligation. Chemical synthesis of azide-labeled proteins would provide useful protein tools for biochemical, biophysical or medical studies.

متن کامل

Chemical Redox Agents for Organometallic Chemistry.

1. Advantages of Chemical Redox Agents 878 2. Disadvantages of Chemical Redox Agents 879 C. Potentials in Nonaqueous Solvents 879 D. Reversible vs Irreversible ET Reagents 879 E. Categorization of Reagent Strength 881 II. Oxidants 881 A. Inorganic 881 1. Metal and Metal Complex Oxidants 881 2. Main Group Oxidants 887 B. Organic 891 1. Radical Cations 891 2. Carbocations 893 3. Cyanocarbons and ...

متن کامل

One-pot hydrazide-based native chemical ligation for efficient chemical synthesis and structure determination of toxin Mambalgin-1.

An efficient one-pot chemical synthesis of snake venom toxin Mambalgin-1 was achieved using an azide-switch strategy combined with hydrazide-based native chemical ligation. Synthetic Mambalgin-1 exhibited a well-defined structure after sequential folding in vitro. NMR spectroscopy revealed a three-finger toxin family structure, and the synthetic toxin inhibited human acid-sensing ion channel 1a.

متن کامل

Identification of chemical substances in industrial wastes and their pyrolytic decomposition products.

In order to quantify the sources of chemical pollutants in the leachate from reclaimed wastes, chemical substances in 11 different types of industrial wastes were identified. Their elution behaviors were also investigated. Alkanes (5.3-890 ng g(-1)), benzenes (8.1-110 ng g(-1)), polyaromatic hydrocarbons (PAHs) (3.2-560 ng g(-1)), alcohols, steroids, phenol (7.1 ng g(-1)), ketones, furans (190-...

متن کامل

Flow of chemical energy in Alwar jheel of Yamuna basin near Allahabad.

The water quality, rate of energy transformation, chemical composition of producers and flow of chemical energy were studied in both feeding river Yamuna and Alwar jheel near Allahabad. As the river Yamuna had high value of alkalinity (210.0 mgl(-1)), conductance (518.0 micromhos), dissolved solids (260.0 mgl(-1)), hardness (162.0 mgl(-1)) and chloride (54.6 mgl(-1)) jheel also showed high valu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009